Льготный консультант. Ветераны. Пенсионеры. Инвалиды. Дети. Семья. Новости

Индивидуальный и групповой риск. Летального риска Рис.1. Определение приемлемого риска

Летальному исходу и инвалидности.

2. Сравните полученные значения с социально приемлемым риском.

3. Определите вероятное количество травмированных на предприятии, на котором Вы работаете.
Решение:

Профессиональный риск – вероятность повреждения здоровья работников в результате воздействия опасных и вредных факторов. При реализации опасных факторов возможны травмы, а при воздействии вредных факторов – заболевание вследствие кумулятивного накопления вредных факторов в организме человека.

Последствием воздействия на работающего опасных и вредных факторов может быть: временная нетрудоспособность; инвалидность; летальный исход.

Риск гибели человека на производстве за год:
R  ,
где n – количество погибших на производстве за год,

N – общая численность работающих.

Для определения риска по травматизму, летальному исходу и инвалидности рассчитаем некоторые дополнительные показатели.

Численность работающего населения:

N раб =N- N пен - N дет
где N - общее количество населения страны, чел.;

N пен – общее количество пенсионеров в стране, чел.;

N дет – общее количество детей в стране, чел.

Численность пенсионеров в стране, N пен:

N пен = =32250000 чел.

Численность детей в стране, N дет:

N дет = =33750000 чел.

N раб =150000000 – 32250000 – 33750000 = 84000000 чел.

Риск по травматизму:

R тр  =4,8∙10 -3

Риск по летальному исходу:

R лет  =1,2∙10 -4

Риск по инвалидности:

R инв  =1,8∙10 -4

Условия профессиональной деятельности по риску гибели человека на производстве ориентировочно разделяют на четыре категории безопасности:

Нормально безопасные R 10 -4 ;

Опасные 10 -4  R  10 -3 ;

Критические 10 -3  R  10 -2 ;

Аварийные.

Таким образом, риск по травматизму относится к критической категории; риск по летальному исходу относится к опасной категории; риск по инвалидности относится к опасной категории.

Приемлемый риск – минимальный, который может быть достигнут из реальных экономических, технических и экологических возможностей. В развитых странах приемлемый риск гибели человека установлен в законодательном порядке и составляет R10 -6 в год – так называемый социально-приемлемый риск. Пренебрежимо малым считается риск 110 -8 в год.

Риск по травматизму:

4,8∙10 -3  10 -6

Риск по летальному исходу:

1,2∙10 -4  10 -6

Риск по инвалидности:

1,8∙10 -4  10 -6

Следовательно, значения рисков превышают допустимый уровень социально-приемлемого риска.

Определим вероятное количество травмированных на предприятии.

Воспользуемся формулой для определения риска, чтобы определить вероятное число травмированных на предприятии.

Откуда, n = R × N.

Риск по травматизму в стране составляет R тр  4,8∙10 -3 .

Численность работников предприятия равна 10000 чел.

Тогда вероятное число травмированных на предприятии:

n = 4,8∙10 -3 × 10000 = 48 чел.

По результатам расчетов вероятное количество травмированных на предприятии составляет 48 чел.

Задание 2

Оценка индивидуального риска различных видов транспорта
В таблице 2.1 приведены статистические данные индивидуального риска с летальным исходом за год в стране.


Причина

Риск,

Автомобильный транспорт

3∙10 -4

Железнодорожный транспорт

4∙10 -7

Водный транспорт

9∙10 -6

Воздушный транспорт

9∙10 -6

Падение

9∙10 -5

Утопление

3∙10 -5

Пожар (ожог)

4∙10 -5

Электрический ток

6∙10 -6

1.Определите количество погибших N 0 в стране за год, используя данные таблицы 2.1.

2. Сравните данные и выделите наиболее безопасный вид транспорта.

3. Определите количество пострадавших при пожаре в бытовых условиях. Как показывает статистика, число этих жертв составляет до 80 % от общего числа погибших.
Решение:
Риск травмирования или летального исхода человека, выполняющего в течение года определенную работу, можно выразить формулой:
R  ,
где N 0 – число неблагоприятных событий , например, несчастных случаев, число пострадавших или погибших;

N – общее количество людей.

Общая численность работающих в стране по данным задачи 1 N раб =84000000 чел. Выразим из формулы риска количество погибших:
N 0 = R × N раб.
Проведем соответствующие расчеты, результаты представим в таблице 2.2.
Таблица 2.2 – Расчет количества погибших


Причина

Риск, R

Общая численность работающих в стране, N раб, чел.

Количество погибших, N0, чел.

1

2

3

4

Автомобильный транспорт

3∙10 -4

84000000

25200

Железнодорожный транспорт

4∙10 -7

84000000

34

Водный транспорт

9∙10 -6

84000000

756

Воздушный транспорт

9∙10 -6

84000000

756

Падение

9∙10 -5

84000000

7560

Утопление

3∙10 -5

84000000

2520

Пожар (ожог)

4∙10 -5

84000000

3360

Электрический ток

6∙10 -6

84000000

504

Таким образом, наиболее безопасным видом транспорта является железнодорожный вид транспорта: он имеет наименьшее значение риска гибели (R=4∙10 -7), а также на данном виде транспорта в рассматриваемом году погибло наименьшее количество человек (34 чел.).

Наиболее опасным видом транспорта в рассматриваемом периоде является автомобильный транспорт. Число погибших составило 25200 чел.

Количество пострадавших при пожаре в бытовых условиях составило:

3360 × 80 / 100 = 2688 чел.

Задание 3

Оценка ветровой нагрузки, формирующей опасные условия жизнедеятельности
Влияние ветровой нагрузки определяется силой (скоростью) ветра (табл. 3.1), направленностью (роза ветров) и продолжительностью.
Таблица 3.1. Характерные признаки ветровой нагрузки – шкала Бофорта


Баллы

Словесное определение силы ветра

Средняя скорость ветра, м/с

Характерные признаки ветровой нагрузки

0

Штиль

0-0,2

Безветрие. Дым поднимается вертикально, листья деревьев неподвижны

1

Тихий

0,3-1,5

Направление , но не по флюгеру

2

Легкий

1,6-3,3

Движение ветра ощущается лицом, шелестят листья, приводится в движение флюгер

3

Слабый

3,4-5,4

Листья и тонкие ветви деревьев все время колышутся, ветер развевает легкие флаги

4

Умеренный

5,5-7,9

Ветер поднимает пыль и мусор, приводит в движение тонкие ветви деревьев

5

Свежий

8,0-10,7

Качаются тонкие стволы деревьев, движение ветра ощущается рукой

6

Сильный

10,8-13,8

Качаются толстые сучья деревьев , гудят телеграфные провода

7

Крепкий

13,9-17,1

Качаются стволы деревьев

8

Очень крепкий

17,2-20,7

Ветер ломает сучья деревьев, идти против ветра очень трудно

9

Шторм

20,8-24,4

Небольшие повреждения, ветер начинает разрушать крыши зданий

10

Сильный шторм

24,5-28,4

Значительные разрушения строений, ветер вырывает деревья с корнем

11

Жестокий шторм

28,5-32,6

Большие разрушения на значительном пространстве. Наблюдается очень редко.

12

Ураган

> 32,6

Каждый регион имеет свои характерные среднестатистические и максимальные ветровые нагрузки, при которых действуют запреты на отдельные виды работ (табл. 3.2).
Таблица 3.2. Запрещения и ограничения по отдельным видам работ при ветровых нагрузках


№ п/п

Сила ветра

Ограничения

1

Более 3 м/с

Химическая обработка лесопосадок , питомников

2

Более 10 м/с

Погрузочно-разгрузочные работы. Перемещение и установка вертикальных панелей с большой парусностью

3

Более 11 м/с

Лесохозяйственные и лесозаготовительные работы (рубка леса, заготовка семян и шишек, изыскательская работа и т.д.)

4

Более 15 м/с

Таблица 3.3. Исходные данные для расчета (вариант 3)

Рассчитайте вероятность реализации события R (А).

Определите силу ветра в баллах по шкале Бофорта.

Из табл. 3.1 и 3.2 выпишите: характерные опасности среды обитания; уровни опасности среды обитания; запреты на выполнение отдельных видов работ. Результаты представьте в виде таблицы 3.4.
Таблица 3.4


Расчет и выводы

Событие



Вероятность

Уровень опасности

Баллы

Запрет на работы

A 1

1-3 м/с


A 2

8-12 м/с


A 3

18-22 м/с


A 4

более 30 м/с


A 5

более 60 м/с


Решение:

1. Рассчитаем вероятность реализации события R (А).

Риск ветровых нагрузок за год определяется количеством дней N 0 с определенной силой ветра (A 1 , A 2 , A 3 , A 4 , A 5) к общему количеству дней в году N  365:
, i=1,2,3,4,5
R(А) 1 = = 0,055

R(А) 2 = = 0,274

R(А) 3 = = 0,027

R(А) 4 = = 0,014

Для дальнейшей характеристики ветровой нагрузки определим среднюю скорость ветра, м/с.

А 1 = = 2 м/с

А 2 = = 10 м/с

А 3 = = 20 м/с

А 4 = = 45 м/с

Определим силу ветра в баллах по шкале Бофорта, из табл. 3.1 и 3.2 выпишем: характерные опасности среды обитания, уровни опасности среды обитания, запреты на выполнение отдельных видов работ. Все данные представим в таблице 3.5 по форме таблицы 3.4.
Таблица 3.5


Расчет и выводы

Событие

Количество дней N 0 ветровой нагрузки в году

Вероятность

Уровень опасности

Баллы

Запрет на работы

A 1

1-3 м/с


20

0,055

Легкий

2

Химическая обработка лесопосадок, питомников

A 2

8-12 м/с


100

0,274

Свежий

5

Погрузочно-разгрузочные работы.

Перемещение и установка вертикальных панелей с большой парусностью


A 3

18-22 м/с


10

0,027

Очень крепкий

8

Монтажные работы на высоте в открытых местах. Кровельные

работы. Кладка кирпичных труб. Выход в открытые водные пространства (море, озеро и т.д.). Восхождение в горах


A 4

более 30 м/с


5

0,014

Ураган

12

Монтажные работы на высоте в открытых местах. Кровельные работы. Кладка кирпичных труб. Выход в открытые водные пространства (море, озеро и т.д.). Восхождение в горах

A 5

более 60 м/с


-

-

-

-

-

Максимальная сила ветра (событие A 4) равна 45 м/с при риске R(А) 4 =0,014;

Наиболее вероятная сила ветра в регионе (событие A 2) равна 10 м/с (5 баллов), риск события R(А) 2 =0,274.

При наиболее вероятной силе ветра в регионе запрещено выполнять: погрузочно-разгрузочные работы; перемещение и установку вертикальных панелей с большой парусностью.

Список использованных источников


  1. Безопасность жизнедеятельности: Учебник для вузов / С.В. Белов, В.А. Девисилов, А.В. Ильницкая, и др.; Под общей редакцией С.В. Белова.- 8-е издание, стереотипное - М.: Высшая школа, 2009. - 616 с.

  2. Вишняков, Я.Д. Безопасность жизнедеятельности. Теория и практика: Учебник для бакалавров / Я.Д. Вишняков. - Люберцы: Юрайт, 2015. - 543 c.

  3. Косолапова, Н.В. Безопасность жизнедеятельности: Учебник / Н.В. Косолапова, Н.А. Прокопенко. - М.: КноРус, 2013. - 192 c.

  4. Маринченко, А.В. Безопасность жизнедеятельности: Учебное пособие / А.В. Маринченко. - М.: Дашков и К, 2013. - 360 c.

  5. Мастрюков, Б.С. Безопасность в чрезвычайных ситуациях. – Изд. 5-е, перераб.- М.: Академия, 2008.- 334 с.

  6. Михнюк, Т.Ф. Безопасность жизнедеятельности / Т.Ф. Михнюк. – Минск: ИВЦ Минфина, 2015. – 341 с.

  7. Сапронов, Ю.Г. Безопасность жизнедеятельности / Ю.Г. Сапронов. М.: Б. изд., 2012. – 336 с.

  8. Соломин, В. П. Безопасность жизнедеятельности: учебник для вузов/ Л.А. Михайлов, В.П. Соломин, Т.А. Беспамятных; под ред. Л.А. Михайлова. – СПб.: Питер, 2013. – 461 с.

Различают индивидуальный и социальный риск.

Индивидуальный риск характеризует опасность определенного вида для отдельного индивидуума.

Социальный (точнее — групповой) — это риск для группы людей.

Социальный риск — это зависимость между частотой событий и числом пораженных при этом людей (см. рис.).

Восприятие риска и опасностей общественностью субъективно. Люди резко реагируют на события редкие, сопровождающиеся большим числом единовременных жертв. В то же время частые события, в результате которых погибают единицы или небольшие группы людей, не вызывают столь напряженного отношения.

Ежедневно на производстве погибает 40…50 человек, a в целом по стране от различных опасностей лишаются жизни более 1000 человек. Но эти сведения менее впечатляют, чем гибель 5-10 человек в одной аварии или каком-либо конфликте.

Это необходимо иметь ввиду при рассмотрении проблемы приемлемого риска.

Субъективность в оценке риска подтверждает необходимость поиска приемов и методологи, лишенных этого недостатка.

По мнению специалистов, использование риска в качестве оценки опасностей является предпочтительнее, чем использование трофитопных показателей.

Основные положения теории риска.

В сентябре 1990 г. в г. Кельне состоялся Первый Всемирный конгресс по безопасности деятельности, как научной дисциплине, проходивший, под девизом “Жизнь в безопасности”. Специалисты из разных стран в своих сообщениях и докладах постоянно оперировали понятием «риск».

В советской технической литературе по безопасности это понятие пока не получило соответствующего признания.

В. Маршалл дает следующее определение: риск — частота реализации опасностей.

Наиболее общим определением признается такое: риск — это количественная оценка опасности.

Количественная оценка — это отношение числа тех или иных неблагоприятных последствий к их возможному числу за определенный период. Определяя риск необходимо указать класс последствий, т.е. ответить на вопрос: риск чего?

Формально риск — это частота. Но пo-существу между этими понятиями имеет место существенная разница, т.к. примени­тельно к проблемам безопасности о возможном числе неблагоприятных последствий приходится говорить с известной долей условности.

Прежде чем перейти к рассмотрению других аспектов проб­лемы риска, приведем примеры. В качестве примера приведем зарубежные данные, характери­зующие индивидуальный риск.

Индивидуальный риск фатального исхода в год, обусловленный, различными причинами (по данным, относящимся ко всему населению США)

Автомобильный транспорт 3*10 -4
Падения 9*10 -5
Пожар и ожог 4*10 -5
Утопление 3*10 -5

Отравление 2*10 -5
Огнестрельное оружие 1*10 -5

Станочное оборудование 1*10 -5
Водный транспорт 9*10 -6

Воздушный транспорт 9*10 -6

Падающие предметы 6*10 -6

Электрический ток 6*10 -6

Железная дорога 4*10 -6

Молния 5*10 -7

Все прочие 4*10 -5

Общий риск 6*10 -4

Ядерная энергия (100 реакторов) 2*10 -10

Под понятием индивидуального риска понимают вероятность поражения отдельной личности в течение определенного периода времени в результате влияния исследуемых факторов опасности при реализации неблагоприятного случайного события с учетом вероятности ее пребывания в зоне поражения.

С математической точки зрения индивидуальный риск определяют как произведение вероятности гибели человека, который находится в данном регионе, от возможных источников опасности на протяжении года и вероятности его пребывания в зоне поражения.

В общем случае количественно индивидуальный риск выражается отношением числа пострадавших людей по определенной причине к общему количеству людей, которые рискуют за определенный период времени (апостериорное определение).

Во время расчета распределения риска по территории вокруг объекта (картирование риску) индивидуальный риск определяется потенциальным территориальным риском и вероятностью пребывания человека в районе возможного действия опасных факторов.

В общем случае индивидуальный риск от некоторой опасности, которая рассчитывается для определенной территории исследования, характеризуются вероятностью гибели отдельной личности из населения за период времени - один год. Оценку индивидуального риска (Ш) можно получить по формуле:

Ш = п / N (5.6)

где п - количество смертей за год по определенной причине;

N - численность населения на исследуемой территории в оцениваемом году.

В практической деятельности этот вид расчета риска является наиболее распространенным. В общем случае в зависимости от задач анализа под п можно понимать как общее число потерпевших, так и число смертельно травмированных или другой показатель тяжести последствий.

Трактовать понятие индивидуальный риск нужно с учетом конкретных видов деятельности и статистических данных относительно несчастных (смертельных) случаев за определенный период времени, которые возникли в результате этой деятельности.

В любом районе, где проживает население, независимо от наличия или отсутствия каких-либо техногенных объектов всегда существует некоторая вероятность того, что человек погибнет в результате несчастного случая в быту, преступного нападения или другого неестественного события. Среднегодовое значение риска для конкретного человека зависит от источников опасности и времени их влияния.

Значение индивидуального риска разделено на 3 категории:

1) бытовые риски (риски, которым подвергается каждый житель страны независимо от профессии и образа жизни);

2) профессиональные риски (риски, связанные с профессией человека);

3) добровольные риски (риски, которые касаются личной жизни, в частности непрофессиональные занятия альпинизмом, прыжки с парашютом и тому подобное).

Индивидуальный риск во многом определяется квалификацией и готовностью индивидуума к действиям в опасной ситуации, его защищенностью. Индивидуальный риск, как правило, надо определять не для каждого человека, а для групп людей, которые приблизительно одинаковое время находятся в разных опасных зонах и имеют одинаковые средства защиты. Рекомендуется оценивать индивидуальный риск отдельно для персонала объекта и для населения прилегающей территории.

Если оценивается риск для какой-либо группы людей определенной профессии или специального рода деятельности, которая связана с повышенной опасностью, этот риск целесообразно определить в пересчете на конкретное рабочее время (на один час работы или один технологический цикл).

Характерные значения индивидуального риска естественной и принудительной смерти людей от действия условий жизни и деятельности приведены в табл. 5.2.

Социальный риск определяется количеством потерь (например, погибших среди населения), что, как правило, обсчитывается статистически. Он во многих случаях является синонимом коллективного риска.

Из таблиц 5.3 - 5.5 видно, что риск летального результата существует на уровне 10 -7 и выше на человека в год. Таким образом, при проектировании и эксплуатации технических устройств риск на уровне 10 -7 чел/год может быть принят допустимым при следующих условиях:

Проблема риска проанализирована глубоко и всесторонне;

Анализ проведен к принятию решений и подтвержден имеющимися данными в определенном часовом интервале;

После наступления неблагоприятного события анализ и вывод о риске, полученные на основании данных, которые были, не меняются;

Анализ показывает, и результаты контроля все время подтверждают, что угроза не может быть уменьшена ценой оправданных расходов.

Таблица 5.2 - Характерные значения индивидуального риска

Принятую оценку допустимого риска и указанные условия нужно выполнять строго и рассматривать как первый шаг к количественному сравнению.

Таблица 5.3 - Вероятность летального исхода по внепроизводственным причинам

Таблица 5.4 - Вероятность летального исхода по производственным причинам

Отрасль народного хозяйства Частота события, 10 -7 чел/год
Горные работы
Транспорт
Строительство
Добыча нерудных полезных ископаемых
Эксплуатация газопроводного оборудования и гидротехнических сооружений 0,6
Металлургическая промышленность 0,6
Деревообрабатыващие работы 0,6
Пищевая промышленность 0,6
Целлюлозно-бумажная промышленность и печать 0,5
Электротехника, точная механика и оптика 0,4
Химия 0,4
Торговля, финансы, страхование, коммунальные услуги 0,4
Текстильная и кожевенно-обувная промышленность 0,3
Здравоохранение 0,2
Средняя величина. для 20,2 млн. застрахованных лиц 0,7

Таблица 5.5 - Вероятность летального исхода в разных сферах жизнедеятельности человека

Если идет речь исключительно о риске материальных потерь, метод сравнения при оценке риска не вызывает сомнений. В этом случае можно принимать решение, оценивая лишь экономический эффект.

Сущность нормирования, регуляции и управления обеспечением безопасности по ее основным компонентам (социально-экономическим, военным, научно-техническим, промышленным, экологическим, демографическим) с использованием рисков сводится к требованию не превышения величин рисков Ш(г), которые формируются и реализовываются, по формулам (5.1 - 5.5) величин приемлемых рисков на заданном часовом интервале.

Введение понятия «индивидуальный риск» и появление количественных значений этого показателя создало предпосылки для установления некоторых «пороговых» значений, т.е. величин приемлемого индивидуального риска. Установление определенных нормативов приемлемого риска получило название нормирования рисков . На этой основе возникла и другая процедура, тесно связанная с оцениванием риска – анализ риска , суть которой состоит в сравнении полученных оценок риска (численных значений) с соответствующими показателями приемлемых значений.

Количественные оценки риска являются объективными показателями опасности промышленных объектов. Однако возникает вопрос, что считать приемлемым риском? Для этого, прежде всего, приемлемую величину каждого вида риска необходимо обосновать. Так, приемлемую величину индивидуального риска смерти людей в результате общих заболеваний возможно установить равной 5·10 -4 1/год. Эта величина соответствует данным ВОЗ, согласно которым в современном мире практически невозможно предотвратить 5 смертей от общих заболеваний на каждые 10 000 человек в возрасте до 30 лет. С таким риском общество вынуждено соглашаться, поскольку затраты на его снижение на современном уровне развития признаны нецелесообразными. Либо, по меньшей мере, необходимо выполнение большого объема фундаментальных и ресурсоемких исследований, направленных на снижение уровня заболеваемости.

После принятия мировым сообществом концепции приемлемого риска начался этап ее реализации. Степень внедрения этой концепции в практическую деятельность сегодня различна в разных странах и в некоторых из них введена в законодательство. Например, в Нидерландах эта концепция уже в 1985 г. была принята парламентом страны в качестве государственного закона. Согласно этому закону, для предельно допустимого уровня индивидуального риска, обусловленного хозяйственной деятельностью, принято значение риска смерти, равное 10 -6 1/год.

Интересен механизм определения величины 10 -6 , ставшей определенным эталоном нормирования рисков различных видов. За основу был принят риск смерти индивидуума в возрасте 10 – 15 лет, который согласно статистическим данным по возрастной смертности в Нидерландах составляет примерно 10 -4 1/год и является минимальным на протяжении всей его жизни. Отметим для сравнения, что максимальный риск смерти для человека соответствует первому году его жизни и равен 2·10 -2 1/год. В Нидерландах, основываясь на этих данных, в качестве предельно допустимого максимального уровня индивидуального риска принято значение, которое составляет 1% от риска смерти в возрастном интервале от 10 до 15 лет, т.е. 10 -6 1/год. Иными словами, вероятность гибели человека в течение года не должна превышать одного шанса из миллиона. Для сравнения можно привести некоторые дан-ные статистики: риск смерти человека, равный 10 -6 1/год, соответствует рис-ку, которому он подвергается в течение своей поездки на автомобиле на рас-стояние в 100 км или в полете на самолете на расстояние 650 км, или, если он выкуривает 3/4 сигареты, или в течение 15 мин занимается альпинизмом и т.д. .



Уровень пренебрежимого риска в Нидерландах был принят исходя из условия, что его показатель должен составлять также 1% от предельно допустимого, т.е. 10 -8 1/год. Приемлемый уровень риска выбирается в диапазоне от 10 -8 до 10 -6 1/год, исходя из социальных и экономических причин. Та-ким образом, между двумя этими уровнями находится область, в которой нужно последовательно уменьшать риск, отыскивая компромисс между социальной выгодой и финансовыми расходами, связанными с повышением безопасности.

Проблемы контроля и уменьшения риска решаются в Нидерландах настолько активно и последовательно, насколько это возможно при современном уровне знаний. Это государство можно рассматривать как пример страны, где наиболее широко используются методы оценки и анализа риска в практической деятельности по обеспечению промышленной безопасности. При этом эксперты и рискменеджеры поставили своей задачей определять риск всесторонне. В этих целях учитываются показатели индивидуального, социального и экологического риска. Первый из них задается вероятностью гибели отдельного человека, второй – соотношением между количеством людей, которые могут погибнуть при одной аварии, и вероятностью такой аварии, а третий – процентом биологических видов экосистем, на которых скажется вредное воздействие. При этом максимальным приемлемым уровнем риска для экосистем считается такой, при котором может пострадать 5% видов биогеоценозов.

В других странах масштабы использования концепции приемлемого риска в законодательстве более ограничены, но во всех странах существует тенденция к ее более полному применению. В странах Европейского союза (ЕС) сложились различные подходы к установлению критериев индивиду-ального риска для населения, проживающего вблизи ОПО. Классификация этих критериев может быть представлена в следующем виде :

1. Критерии риска, определяющие цель и целевые показатели, но не средства обеспечения безопасности (Великобритания).

2. Предписывающие критерии риска, устанавливающие максимальный уровень риска для его контроля, при этом подходы к уменьшению риска имеют рекомендательный характер (Нидерланды, Венгрия, Чешская республика).

3. Предписывающие критерии, которые основаны на установленном государством (не максимальном) уровне риска для его контроля (Франция) или определяющие недопустимость риска, источником которого является ОПО, вне его границ, т.е. ограничение риска со стороны ОПО пределами его территории (Германия).

Несмотря на методологические различия в формулировках критериев нормирования индивидуального риска, существует единая Директива ЕС (Севезо-2) по управлению безопасностью химических объектов при крупных авариях, которая применяется каждым государством – членом ЕС. При этом верхняя граница (предельно допустимый уровень) индивидуального риска для стран ЕС принят равным 10 -5 1/год.

В России в последние годы также активно используется методический аппарат количественного анализа индивидуального риска в различных областях. Однако до настоящего времени на государственном уровне не установлены информативные значения, опираясь на которые можно осуществлять эффективную политику менеджмента риска с применением различных механизмов регулирования и контроля. В одной из первых работ в этой области, выполненной под руководством А.Н. Елохина , обоснованы критерии приемлемости индивидуального риска с учетом амортизационного износа основного технологического оборудования и анализа аварийности в промышленности РФ. Предложены следующие уровни риска для населения (для одного человека в год) и соответствующие этим уровням зоны контроля риска:

а) для территорий вблизи существующих ОПО уровень риска:

Более 10 -4 – зона недопустимого риска,

Менее 10 -4 , но более 10-5 – зона жесткого контроля риска,

Менее 10 -5 – зона приемлемого риска;

б) для территории вблизи нового строительства уровень риска должен быть снижен для каждой зоны на порядок.

Приведенным названиям зон соответствуют следующие описания:

1-я зона – зона недопустимого риска – это территория, где необходимо либо проводить соответствующий комплекс мероприятий, либо не допускать нахождение людей в этой зоне. Под комплексом мероприятий понимаются мероприятия, обеспечивающие снижения риска и проводимые либо на самом объекте (изменение технологических процессов, уменьшение запасов опасных веществ, введение дополнительных систем контроля и т.д.), либо вне его (улучшение организации экстренной медицинской помощи, обучение населения и т.д.). Для нового строительства в таких зонах вообще не следует предусматривать нахождение людей, не связанных непосредственно с обслуживанием технологического оборудования и производственных процессов на объекте.

2-я зона – зона жесткого контроля риска . В этой зоне должны выполняться следующие требования:

Нахождение в зоне ограниченного числа людей в течение ограниченного отрезка времени (например, один – два объекта с наибольшей работающей сменой до 100 чел.);

Персонал таких объектов должен быть хорошо обучен и готов к проведению защитных мероприятий в случае крупной производственной аварии на потенциально опасном объекте;

В зоне должна быть отработана система оповещения, позволяющая в кратчайшие сроки осуществить мероприятия по защите производственного персонала;

Объект, находящийся в такой зоне, сам не должен являться потенциально опасным, поддерживающим эффект «домино», и не должен использовать непрерывные технологические процессы.

3-я зона – зона приемлемого риска – это территория, где допускается любое строительство и размещение населения.

Исходя из уровня социально-экономического развития Российской Федерации и на основании существующего мирового опыта, Российским научным обществом анализа риска в 2006 г. принята Декларация об установлении предельно допустимого уровня индивидуального риска смерти, а также уровня социального риска. Предложенные нормативы носят рекомендательный и целеориентированный характер, отражают специфику промышленного объекта, а также характер опасного воздействия (рис. 10.2).

техногенного риска

Для потенциально опасных производственных объектов России установлен предельно допустимый уровень индивидуального риска в диапазоне 10 -4 –10 -5 смертей в год в качестве общего федерального норматива. Указанный норматив дифференцирован в зависимости от специфики промышленных объектов – источников опасности и характера их опасного воздействия на население. Эта дифференциация отражает следующие показатели предельно допустимого уровня индивидуального риска смерти, являющиеся частными федеральными нормативами:

а) по критерию новизны промышленного объекта (за исключением специаль-ных объектов):

Не более 10 -5 1/год – для новых (вновь проектируемых) объектов,

Не более 10 -4 1/год – для действующих объектов;

б) по критерию комбинированности опасного воздействия:

Не более 10 -5 1/год – для систематического воздействия вредных факторов на здоровье населения,

Не более 10 -4 1/год – для совместного (комбинированного) систематического воздействия различных вредных факторов на здоровье населения.

Коллективный риск

Показатель потенциального риска, как мы установили, определяет величину и основу пространственного распределения опасности – частоты реализации аварий (либо негативных воздействий определенного уровня) в виде вероятностных зон поражения. Величина индивидуального риска учитывает вероятность последствий этих событий для одного человека, т.е. смерти либо потери здоровья (летальный и нелетальный исходы) индивидуума. Однако опасные события могут оказывать воздействие на группу людей и тогда последствия определяются количеством пострадавших . Следовательно, необходим учет количества людей, находящихся в вероятностных зонах поражения. Данная величина может быть охарактеризована распределением персонала (или населения) на рассматриваемой территории и для произвольного момента времени также является вероятностной величиной.

Количеством пострадавших, в соответствии с принятой терминологией при классификации ЧС, является число людей, погибших и/или получивших в результате ЧС ущерб здоровью. На языке военных специалистов это понятие часто звучит как сумма безвозвратных и санитарных потерь. Вместе с тем показатель коллективного риска в частных случаях должен оговаривать тяжесть последствий, поскольку термин «здоровье человека» в целом отражает не только отсутствие болезней или инвалидности, но и, как мы уже говорили, состояние физического, психического и социального благополучия. Известно, что в результате таких техногенных аварий и катастроф, как крушения самолетов, которые очень тяжело воспринимаются обществом, помощь психологов необходима многим людям.

Таким образом, показатель «коллективный риск» в отличие от риска индивидуального, является интегральной мерой опасности, отражающей масштаб ожидаемых последствий для людей в результате потенциальных аварий или других негативных воздействий.

Вероятность реализации события-аварии рА за рассматриваемый период времени t связана с частотой реализации этого события λА и может быть представлена в общем виде:

поэтому коллективный риск является, по сути, математическим ожиданием дискретной случайной величины людских потерь n и может быть рассчитан в виде:

где i = 1…k – число расчетных сценариев возникновения и развития аварии, при которых возможны людские потери; pi – вероятность реализации i -го сценария аварии; ni – значение величины людских потерь (общих либо пострадавших в определенной степени) при реализации i -го сценария аварии.

Прогноз количества пострадавших в оцениваемой группе, когда статистические данные отсутствуют, можно выполнить с помощью математических моделей, например, по формуле:

, чел., (5.8)

где M [NA ] – математическое ожидание числа случайных событий-аварий на рассматриваемой территории; SЗП – средняя площадь зоны поражения при реализации события-аварии (или ее фактора), км2/событие; П – средняя плот-ность населения в районе возможных опасных событий, чел/км2.

Коллективный риск может быть выражен посредством индивидуального риска, например, вблизи ОПО:

, (5.9)

где S – область интегрирования, обычно площадь территории, км2;

N(x,y) – плотность распределения населения и (или) персонала по территории, прилегающей к опасному объекту, чел./км 2 .

Расчет показателя коллективного риска при известной величине индивидуального риска в общем виде может быть выполнен по формуле:

Чел/год, (5.10)

где N – число людей, подверженных рассматриваемой опасности (опасному фактору), чел.

Поскольку коллективный риск характеризует масштаб опасности, этот показатель риска часто используется в следующих целях:

Оценки и сравнения различных территорий по уровню опасности;

Оценки и сравнения отдельных событий по уровню опасности;

Оценки уровня опасности для отдельных групп людей, коллективов, экипажей, объединенных выполнением общих целей (рабочих и служебных обязанностей), местом проживания и т.д.

Различия в рассмотренных показателях риска (потенциальный, индивидуальный, коллективный) можно проиллюстрировать на таком примере. Вблизи источника постоянной опасности (ОПО) расположено здание учреждения, где в течение рабочего дня находится 100 сотрудников, а в остальное время суток – 2 охранника. Потенциальный риск территории (в данном случае – помещений) будет определяться степенью опасности в каждом из них, и, предположим, он одинаков. Индивидуальный риск не зависит от числа присутствующих в здании и будет также одинаков для каждого из сотрудников и охранников при равном времени пребывания в здании. Однако коллективный риск за определенный промежуток времени (к примеру, год) для группы сотрудников и группы охранников будут существенно отли-чаться. Несложно подсчитать, что в первом случае он будет в 50 раз выше.

Пример 4.1. Численность пострадавших в 2007 г. в России при несчастных случаях на производстве со смертельным исходом составила n = 2985 чел. Определите индивидуальный риск гибели человека на производстве, если численность работающих в стране составляла примерно N = 74 млн. чел. Определите величину коллективного риска в организации, насчитывающей n1 = 500 работающих.

Последовательность расчета:

1. Индивидуальный риск гибели человека на производстве составит:

,1/год

2. Прогнозируемый коллективный риск для работников организации будет равен:

, чел./год.

Социальный риск

Существующая в области промышленной безопасности и принятая к рассмотрению система показателей риска (индивидуальный, коллективный, социальный, технический, экологический) учитывает воздействия, возникающие при реализации опасностей на определенные объекты. Таким объектом воздействия, т.е. сферой приложения социального риска, являются группы людей либо их интересы (в этом его сходство с коллективным риском), а также сообщества людей или общество в целом. В этом состоит первый признак социального риска – масштабность.

Вторым признаком социального риска является вид и степень тяжести негативных последствий. Этот показатель риска учитывает не только гибель, травмы и болезни людей, пострадавших в результате аварий, катастроф и ЧС. Социальный риск может принимать во внимание экономические и социальные потери (ущерб) в случае нарушения процесса нормальной жизнедеятельности, а также вследствие изменений в окружающей человека среде (социальной и природной) при реализации опасности.

Социальный ущерб населению и территории состоит в отрицательном влиянии на физическое, материальное и моральное состояние людей. К числу социальных последствий могут быть отнесены генетические отклонения у людей, обусловленные загрязнением окружающей среды мутагенами, вызывающими наследственные изменения в хромосомах и генах. Социальные последствия оказывают существенное влияние на демографическую ситуацию в стране, выражающуюся в снижении численности населения в районах бедствия за счет вынужденных переселенцев из этих районов, в изменении профессиональной структуры населения, его возрастного состава и т.д. Социальные и другие последствия могут негативно сказываться на реализации социальных и экономических программ, тем самым снижая экономические возможности государства. Анализ последствий крупных аварий и катастроф показывает, что затраты на их ликвидацию, создание приемлемых условий для жизнедеятельности населения могут существенно влиять на социально-экономическое развитие государства.

Основные источники социального риска и соответствующие им факторы приведены в табл. 5.2.

Таблица 5.2 – Основные источники и факторы социального риска

Источник социального риска Наиболее распространенные факторы социального риска
Промышленные технологии и опасные промышленные объекты Транспортные аварии и катастрофы. Аварии на АЭС, ТЭС, химических комбинатах, продуктопроводах и т.п. Техногенное загрязнение окружающей среды
Системы жизнеобеспечения населения Аварии на электростанциях и электроэнергетических системах. Аварии на тепловых сетях, системах газо- и водоснабжения, бытовых газовых приборов
Урбанизация экологически неустойчивых территорий Поселение людей в зонах возможного затопления, образования оползней, селей, ландшафтных пожаров, повышенной сейсмичности региона
Социальные и военные конфликты Боевые действия. Применение оружия массового поражения
Эпидемии Распространение вирусных заболеваний
Снижение качества жизни Безработица, голод, нищета. Ухудшение медицинского обслуживания. Низкое качество продуктов питания. Неудовлетворительные жилищно-бытовые условия

Одной из наиболее часто употребляющихся характеристик опасности является индивидуальный риск - вероятность (частота) поражения отдельного индивидуума в результате воздействия исследуемых факторов опасности. Этот вид риска, которому подвергается индивидуальное лицо, рассматривается в качестве первичного понятия, во-первых, в связи с приоритетом человеческой жизни как высшей ценности и, во-вторых, в связи с тем, что именно индивидуальный риск может быть оценен по большим выборкам с достаточной степенью достоверности, что позволяет определять другие важные категории риска (например, потенциальный, территориальный) при анализе техногенных опасностей и осуществлять назначение приемлемого и неприемлемого уровня риска.

Коллективный риск - масштаб ожидаемых последствий для людей от потенциальных аварий. Фактически коллективный риск определяет ожидаемое количество смертельно травмированных в результате аварий на рассматриваемой территории за определенный период времени. Наиболее удобно пользоваться этим понятием для сравнения различных территорий хозяйственной деятельности, однако для разработки мер безопасности применение коллективного риска неэффективно, так как из анализа аварийности и травматизма выявлено, что основной ущерб от несчастных случаев, как результатов событий, зачастую не рассматривается.

Как индивидуальный, так и коллективный риски могут быть переведены в сферу экономических и финансовых категорий, если установить стоимость человеческой жизни и использовать математическое определение риска. Такой подход широко обсуждается, вызывая возражения определенного круга лиц, которые считают человеческую жизнь бесценной и все финансовые сделки на этой почве недопустимыми. Однако, на практике неизбежно возникает необходимость денежной оценки человеческой жизни именно с целью обеспечения безопасности людей. В большинстве промышленно развитых стран этот вопрос решается путем страхования индивидуальных рисков, в том числе фатальных.

Социальные риски - это риски, пронизывающие все общественные слои, группы, одни из которых выступают субъектами, а другие - объектами риска. Управлять ими можно на основе совместного, взаимовыгодного участия и согласованности интересов участников.

13. Оценка риска с использованием интервального анализа

Задачи с интервальными неопределенностями и неоднозначностями являются важнейшей сферой приложений интервального анализа, а само интервальное описание неопределенности - одним из наиболее популярных, наряду с нечетким (размытым) и вероятностным (стохастическим) описаниями. При этом может показаться, что интервальное описание неопределенности является наименее информативным среди других, наиболее «скупым» на детали, поскольку учитывает лишь границы возможных значений неизвестной величины. Но эта же «скупость» оборачивается «экономностью» интервальных моделей и большей развитостью математического аппарата для их исследования. К примеру, ни в теории нечетких множеств, ни в теории вероятностей не достигнуто той развитости методов решения систем уравнений с неопределенностями, как это имеет место для интервальных систем уравнений.

Большое разнообразие постановок задач с интервалами на входе доставляет идентификация в условиях неопределенности, когда данные об объекте, получаемые в результате измерений, либо каким-нибудь другим способом, не известны точно, но нам все равно требуется найти или как-то оценить параметры объекта.

Вплоть до конца прошлого века модели неопределенности, используемые при оценке параметров и идентификации, имели, главным образом, стохастический или вероятностный характер, основываясь на известных распределениях рассматриваемых величин и т.п. Но во многих практических ситуациях недостаточно информации для того, чтобы считать неопределенные факторы подчиняющимися какой-либо вероятностной модели (к примеру, отсутствует статистическая однородность результатов испытаний), либо эти факторы могут не удовлетворять тем или иным (часто весьма обременительным) условиям, которые на них налагает вероятностная модель неопределенности. Таковыми являются требования независимости исходных величин или специальный вид их распределений и т.п.

В настоящее время интервальное представление факторов неопределенности привлекает все большее внимание инженеров, как наименее ограничительное и наиболее адекватное многим практическим постановкам задач.

Задача оптимизации состоит, как известно, в нахождении наилучшего значения некоторой целевой функции на допустимом множестве, задаваемом обычно системой ограничений (уравнений и/или неравенств). Для решения задачи оптимизации в последние десятилетия было предложено большое количество подходов, каждый из которых имеет свои преимущества и недостатки. Тем не менее, общими чертами большинства из них являются

Локальный характер, и, как следствие, неспособность находить гарантированно глобальный оптимум целевой функции,

Гарантированные оценки точности полученных решений либо находятся подобными методами с большим трудом, либо не находятся вообще.

Методы глобальной оптимизации, основанные на применении интервального анализа, свободны от этих недостатков, так как способны исследовать целые куски области определения целевой функции, имеющие ненулевую меру. Более того, интервальные методы не теряют решений-оптимумов.

Интервальный тип данных и интервальная арифметика реализуются на современных ЭВМ, например, представлением интервала как пары чисел - одного для левого конца интервала, а другого для правого. При этом существующее аппаратное обеспечение, в частности, арифметика чисел с плавающей точкой, используются без каких-либо изменений, так как корректность получающейся интервальной арифметики может быть обеспечена так называемыми направленными округлениями. Например, там, где в задачах внешнего интервального оценивания в процессе вычислений требуется округление результата, нижняя граница интервала должна округляться вниз, а верхняя граница интервала - вверх. Таким образом, даже неизбежные ошибки округления при вычислениях с плавающей точкой будут строго и систематически учитываются в процессе выполнения интервальной программы.

В статистике интервальных данных (СИД) элементами выборки являются не числа, а интервалы, в частности, порожденные наложением ошибок измерения на значения случайных величин. Подробнее этот сравнительно новый, но весьма перспективный раздел эконометрики рассмотрим в главе 9. Здесь дадим лишь общее представление о статистике интервальных данных в сравнении с классической математической статистикой. Прежде всего отметим, что СИД входит в теорию устойчивости (робастности) статистических процедур и примыкает к интервальной математике. В СИД изучены практически все задачи классической прикладной математической статистики, в частности, задачи регрессионного анализа, планирования эксперимента, сравнения альтернатив и принятия решений в условиях интервальной неопределенности и др. Основная идея СИД является общеинженерной - каждая величина должна приводиться вместе с погрешностью ее определения. К сожалению, эта идея еще не стала общеэкономической.

Рассмотрим развитие в течение последних 15 лет асимптотических методов статистического анализа интервальных данных при больших объемах выборок и малых погрешностях измерений. В отличие от классической математической статистики, сначала устремляется к бесконечности объем выборки и только потом - уменьшаются до нуля погрешности. Разработана общая схема исследования, включающая расчет двух основных характеристик - нотны (максимально возможного отклонения статистики, вызванного интервальностью исходных данных) и рационального объема выборки (превышение которого не дает существенного повышения точности оценивания и статистических выводов, связанных с проверкой гипотез). Она применена к оцениванию математического ожидания и дисперсии, медианы и коэффициента вариации, параметров гамма-распределения и характеристик аддитивных статистик, для проверки гипотез о параметрах нормального распределения, в т.ч. с помощью критерия Стьюдента, а также гипотезы однородности двух выборок по критерию Смирнова, и т.д. Разработаны подходы к учету интервальной неопределенности в основных постановках регрессионного, дискриминантного и кластерного анализов.

Многие утверждения СИД отличаются от аналогов из классической математической статистики. В частности, не существует состоятельных оценок: средний квадрат ошибки оценки, как правило, асимптотически равен сумме дисперсии этой оценки, рассчитанной согласно классической теории, и квадрата нотны. Метод моментов иногда оказывается точнее метода максимального правдоподобия. Нецелесообразно с целью повышения точности выводов увеличивать объем выборки сверх некоторого предела. В СИД классические доверительные интервалы должны быть расширены вправо и влево на величину нотны, и длина их не стремится к 0 при росте объема выборки. СИД позволяет снять некоторые противоречия между метрологией и классической математической статистикой. Например, вторая из названных дисциплин утверждает, что путем увеличения числа измерений можно сколь угодно точно оценить параметр, а первая вполне справедливо оспаривает это утверждение. Результаты СИД уточняют интуитивные представления метрологов (которые сосредотачивались, впрочем, вокруг весьма частного с точки зрения эконометрики вопроса - оценивания математического ожидания) и развенчивают "гордыню" математической статистики. (за точность этого вопроса не отвечаю пардон заранее)))



Похожие публикации